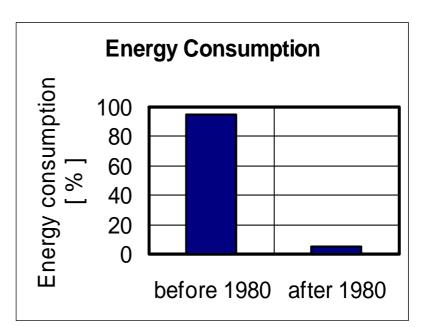
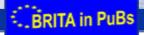

BIT – The BRITA in PuBs Information Tool for Public Decision Makers

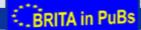


Energy consumption of building stock in Europe

- **Energy** consumption of building stock in Europe
- Concentration on the energy-unefficient building stock
- Significance of energy conservation as set-up goals of (public) decision makers in retrofit projects
- Realised by increasing the knowledge of energy-efficient retrofit technologies and their intelligent application
 - by presenting best practice examples
 - by giving simple-to-use tools at hand that will support them at the first planning phase



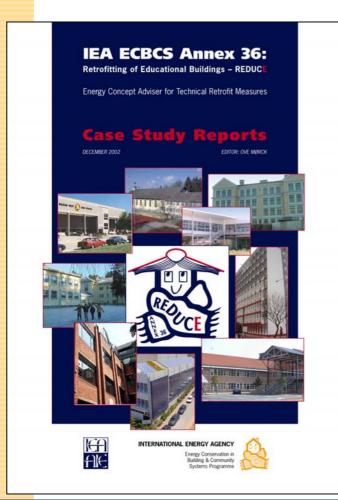
- Energy consumption of building stock in Europe
- Concentration on the energy-unefficient building stock
- Significance of energy conservation as set-up goals of (public) decision makers in retrofit projects
- Realised by increasing the knowledge of energy-efficient retrofit technologies and their intelligent application
 - by presenting best practice examples
 - by giving simple-to-use tools at hand that will support them at the first planning phase


BRITA in PuBs target groups deliverables	technical personnel (planning + manage- ment)	technical mainte- nance staff	technical consultants	politicians	building owners	contractors	building users	general public
financial schemes report					45 14			
design guidelines								
quality control toolbox								
BIT: BRITA in PuBs information tool on innovative retrofit measures								
demonstration building report					10			
BISHs: BRITA in PuBs blackboard information sheets								
BRITA in PuBs e-learning modules								
website (www.brita-in-pubs.com)								
electronic newsletter								
PR-campaign								
articles in journals + magazines						2		
common eco-buildings symposium + alternative conferences								
specifically targeted to group	offe	rs valuable inf	ormation to gr	oup				

IEA ECBCS Annex 36: Energy Concept Advisor

33 Case Studies from 10 Countries

Photos	Country	Case Studies
	Germany	D1: School in Stuttgart-Plieningen D2: Bertolt-Brecht-School, Dresden D3: Paul-Robeson-Schol, Leipzig D4: University Stuttgart D5: University Ulm D6: University Library Bremen D7: Käthe-Kollwitz-School, Aachen D8: Laboratory Building, Jülich
	Den- mark	DK1: Egebjerg School, Ballerup DK2: Enghøj School, Hvidovre DK3: Vridsløselille School, Albertslund
	Finland	SF1: Elementary School Oulujoki, Oulu SF2: Vihasitenkari Day-care Centre
	France	FR1: Louise Labe Secondary School FR2: Gambetta Professional High School
	Greece	GR1: Chemical Engineering Building NTUA, Athens GR2: University of Ionnina GR3: Rural and Surveying Engineering Building NTUA, Athens


Photos	Country	Case Studies
	Italy	I1: University Building Mattatoio, Rome
	Norway	N1: Kampen School N2: Borgen Secondary School
	Poland	PL1: Secondary School Swarzedz PL2: Technical University Poznan
	United Kingdom	UK1: William Parker Community Secondary School UK2: Hadley Junior School UK3: Thames Valley University, Grove House, Ealing UK4: George Tomlinson School, Bolton, Lancashire UK5: Ketley Town Junior School UK6: Slough Grammar School UK7: Classrooms of the Future, Telford
	USA	US1: Wausau West High School, Sullivan County, Tennessee US2: University New Hampshire US3: University New Hampshire

Case Study Report

IEA Energy Conservation in Buildings and Community Systems, Annex 36 Case studies overview

Exemplary Retrofitting of a School (EROS) in Stuttgart-Plieningen, Germany

1 Phot

Figure 1: South view of the school building (building section 1 and 2)

Project Summary

In the EROS Project the potential for the energy efficient retrofit of a typical school building in West Germany was demonstrated. The renewal of the space heating system was combined with improved insulation to yield synergetic effect. The project aimed to minime buther energy consumption and optimise the cost effectiveness of the retrofit. Thus, both operating costs and emissions were reduced. The goal was to improve the thermal insulation at least to the standard of the 1995 German regulations on thermal insulation for new buildings.

3 Sit

Stuttgart, the capital of the Bundesland Baden-Wurttemberg, is located in the valley and on the falls around the river Neckar in the South Western part of Germany at devations between 200 and 400 meters. It's climatic conditions are best described by the Worzburg Test Reference Year. The coldest month is January with a mean of -1,3 °C; the warmest month is August with a mean of 18,3 °C.

4 Building description /typology

4.1 Typology / Age

Typology/Age	Pre 1910	1910-1930	1930-1950	1950-1970	1970-
The multi-storey school - The side corridor school					•

The building consists of three parts with different ages and is used as a primary school and a secondary school (Hauptschule). This combination is common in Germany.

Navigator

REDUCE Retrofitting in Educational Buildings

ENERGY CONCEPT ADVISER

for Technical Retrofit Measures

obtain recommendations for specific problems in your building

Case Studies

Retrofit Measures

Compare your building's consumption to national data

Performance Rating

develop an energy efficient retrofit concept for your building

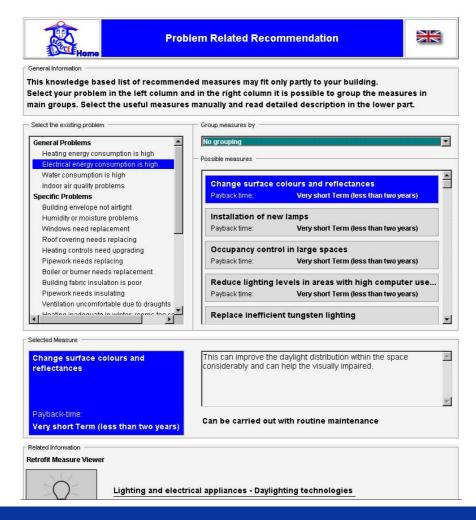
programs and methods to analyse your building performance

Utilities

Info & Contact

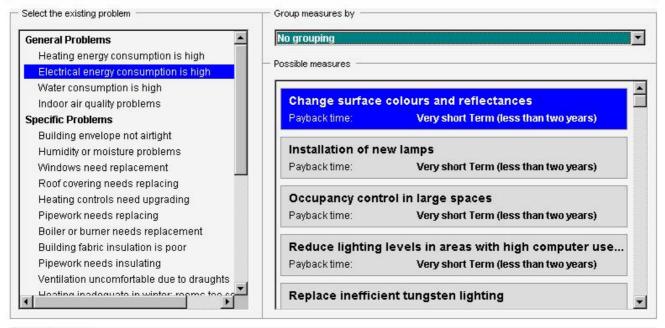
REDUCE Retrofitting in Educational Buildings

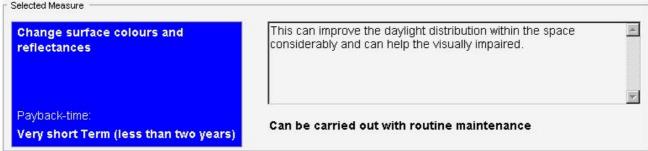
ENERGY CONCEPT ADVISER


for Technical Retrofit Measures

obtain recommendations for specific problems in your building	Recommendations
study more than 30 retrofitted buildings and retrofit measures	Case Studies & Retrofit Measures
compare your building's consumption to national data	Performance Rating
develop an energy efficient retrofit concept for your building	Retrofit Concept
programs and methods to analyse your building performance	Utilities
any questions	Info & Contact

Problem Related Recommendations


Problem Related Recommendation



General Information

This knowledge based list of recommended measures may fit only partly to your building.

Select your problem in the left column and in the right column it is possible to group the measures in main groups. Select the useful measures manually and read detailed description in the lower part.

Related Information

Retrofit Measure Viewer

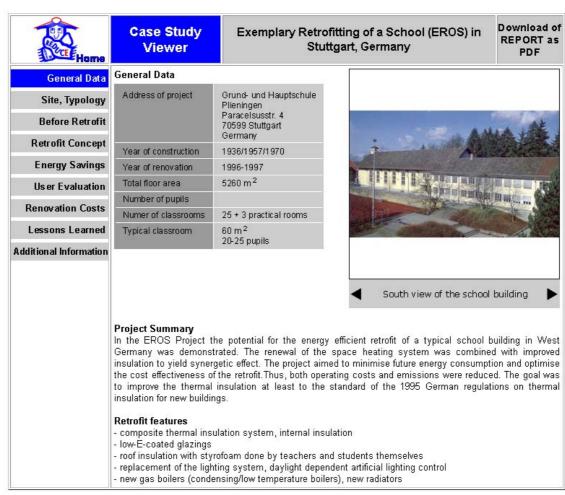
Lighting and electrical appliances - Daylighting technologies

REDUCE Retrofitting in Educational Buildings

ENERGY CONCEPT ADVISER

for Technical Retrofit Measures

Matrix of Case Studies and Retrofit Measures


Case Studies & Retrofit Measures

Retrofit Measures Sorting of: Case Studies by country Retrofit Measures by Energy technologies Retrofit Measures Country Case Studies

Case Study Viewer

Case Study Viewer

Exemplary Retrofitting of a School (EROS) in Stuttgart, Germany

Download of REPORT as PDF

General Data

Site, Typology

Before Retrofit

Retrofit Concept

Energy Savings

User Evaluation

Renovation Costs

Lessons Learned

Additional Information

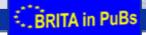
General Data

Address of project	Grund- und Hauptschule Plieningen Paracelsusstr. 4 70599 Stuttgart Germany
Year of construction	1936/1957/1970
Year of renovation	1996-1997
Total floor area	5260 m ²
Number of pupils	
Numer of classrooms	25 + 3 practical rooms
Typical classroom	60 m ² 20-25 pupils

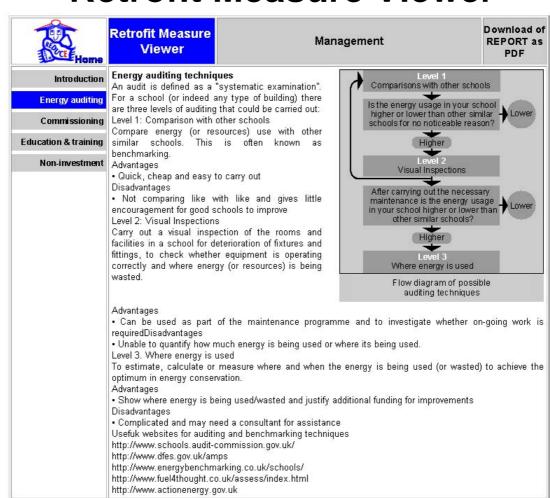
◀

South view of the school building

In the EROS Project the potential for the energy efficient retrofit of a typical school building in West Germany was demonstrated. The renewal of the space heating system was combined with improved insulation to yield synergetic effect. The project aimed to minimise future energy consumption and optimise the cost effectiveness of the retrofit. Thus, both operating costs and emissions were reduced. The goal was to improve the thermal insulation at least to the standard of the 1995 German regulations on thermal insulation for new buildings.


Retrofit features

- composite thermal insulation system, internal insulation
- low-E-coated glazings
- roof insulation with styrofoam done by teachers and students themselves
- replacement of the lighting system, daylight dependent artificial lighting control
- new gas boilers (condensing/low temperature boilers), new radiators


Case Studies & Retrofit Measures

Retrofit Measures Sorting of: Case Studies by country Retrofit Measures by Energy technologies Retrofit Measures Country Case Studies

Retrofit Measure Viewer

Retrofit Measure Viewer

Management

Introduction

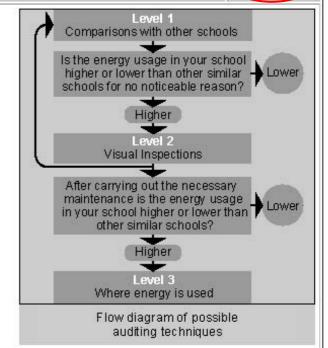
Energy auditing

Commissioning

Education & training

Non-investment

Energy auditing techniques


An audit is defined as a "systematic examination". For a school (or indeed any type of building) there are three levels of auditing that could be carried out: Level 1: Comparison with other schools

Compare energy (or resources) use with other similar schools. This is often known as benchmarking.

Advantages

- Quick, cheap and easy to carry out Disadvantages
- Not comparing like with like and gives little encouragement for good schools to improve Level 2: Visual Inspections

Carry out a visual inspection of the rooms and facilities in a school for deterioration of fixtures and fittings, to check whether equipment is operating correctly and where energy (or resources) is being wasted.

Advantages

- Can be used as part of the maintenance programme and to investigate whether on-going work is requiredDisadvantages
- Unable to quantify how much energy is being used or where its being used.

Level 3. Where energy is used

To estimate, calculate or measure where and when the energy is being used (or wasted) to achieve the optimum in energy conservation.

Advantages

- Show where energy is being used/wasted and justify additional funding for improvements Disadvantages
- Complicated and may need a consultant for assistance
 Usefuk websites for auditing and benchmarking techniques

http://www.schools.audit-commission.gov.uk/

http://www.dfes.gov.uk/amps

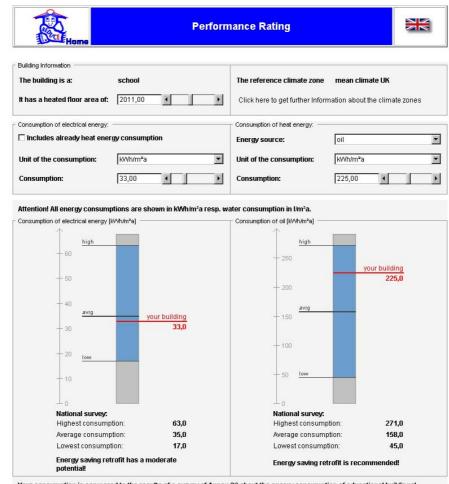
http://www.energybenchmarking.co.uk/schools/

http://www.fuel4thought.co.uk/assess/index.html

http://www.actionenergy.gov.uk

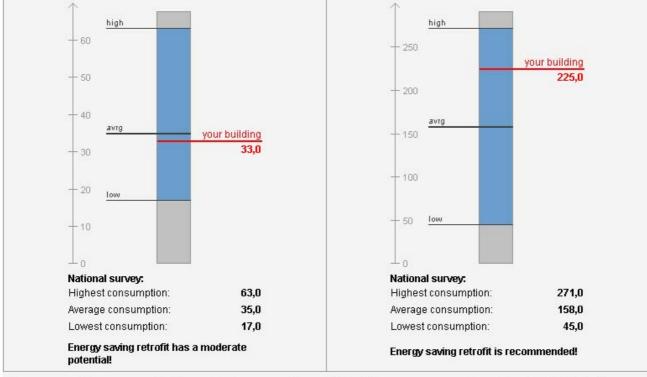
REDUCE Retrofitting in Educational Buildings

ENERGY CONCEPT ADVISER


for Technical Retrofit Measures

- 10	
Recommendations	obtain recommendations for specific problems in your building
Case Studies & Retrofit Measures	study more than 30 retrofitted buildings and retrofit measures
Performance Rating	compare your building's consumption to national data
Retrofit Concept	develop an energy efficient retrofit concept for your building
Utilities	programs and methods to analyse your building performance
Info & Contact	any questions

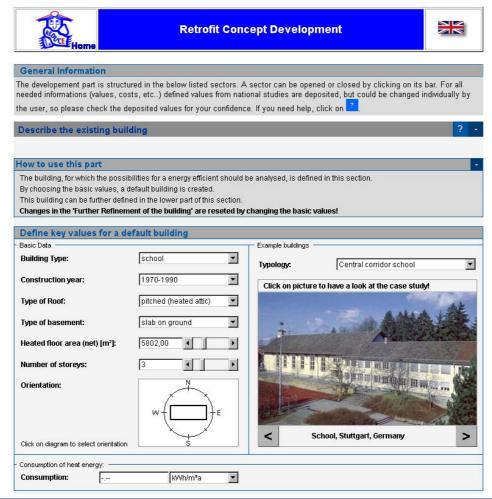
Performance Rating


Your consumption is compared to the results of a survey of Annex 36 about the energy consumption of educational buildings!

Performance Rating

The building is a: t has a heated floor area of	school f: 2011,00	The reference climate zone Click here to get further Info	mean climate UK mation about the climate zones
Consumption of electrical energy		Consumption of heat energy: —	Toil
Unit of the consumption:	kWh/m²a ▼	Unit of the consumption:	kWh/m²a
Consumption:	33,00	Consumption:	225,00
attention! All energy consur	mptions are shown in kWh/m²a resp.	water consumption in I/m²a.	
		water consumption in I/m²a. Consumption of oil [k/Vh/m²a]	
Consumption of electrical energy		Consumption of oil [kVVh/m²a]	your building

REDUCE Retrofitting in Educational Buildings


ENERGY CONCEPT ADVISER

for Technical Retrofit Measures

Recommendations
Case Studies & Retrofit Measures
Performance Rating
Retrofit Concept
Utilities
Info & Contact

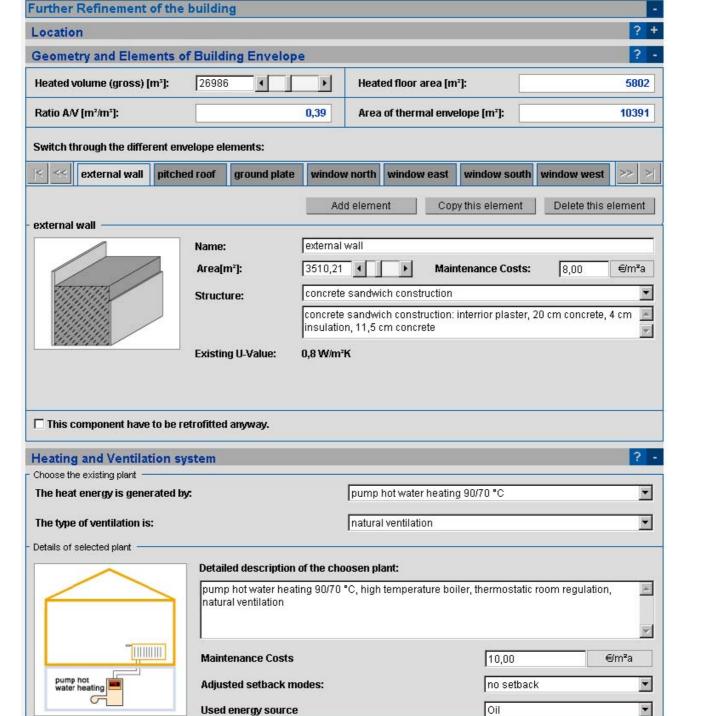
General Information

The developement part is structured in the below listed sectors. A sector can be opened or closed by clicking on its bar. For all needed informations (values, costs, etc..) defined values from national studies are deposited, but could be changed individually by the user, so please check the deposited values for your confidence. If you need help, click on 7.

Describe the existing building

?

How to use this part

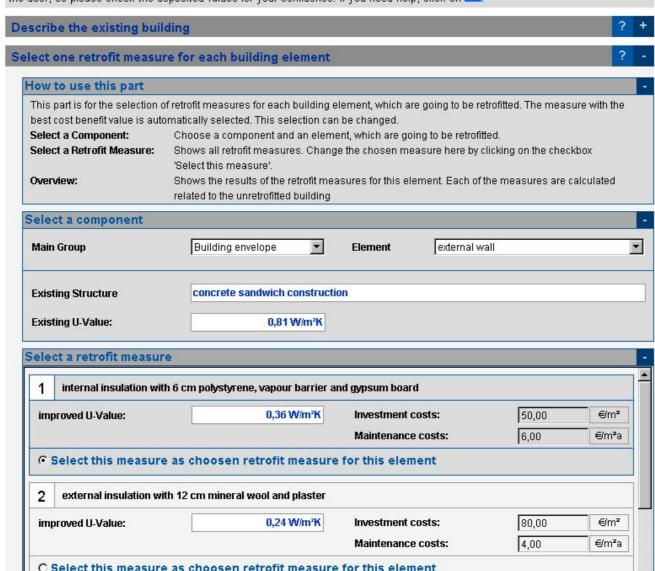

The building, for which the possibilities for a energy efficient should be analysed, is defined in this section.

By choosing the basic values, a default building is created.

This building can be further defined in the lower part of this section.

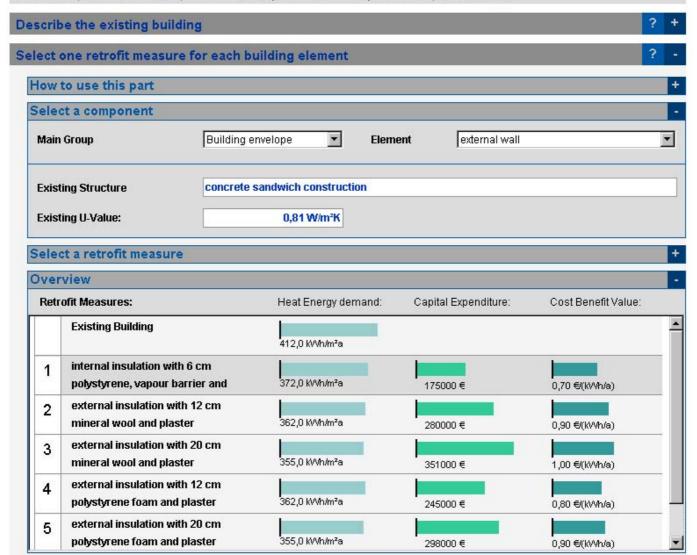
Changes in the 'Further Refinement of the building' are reseted by changing the basic values!

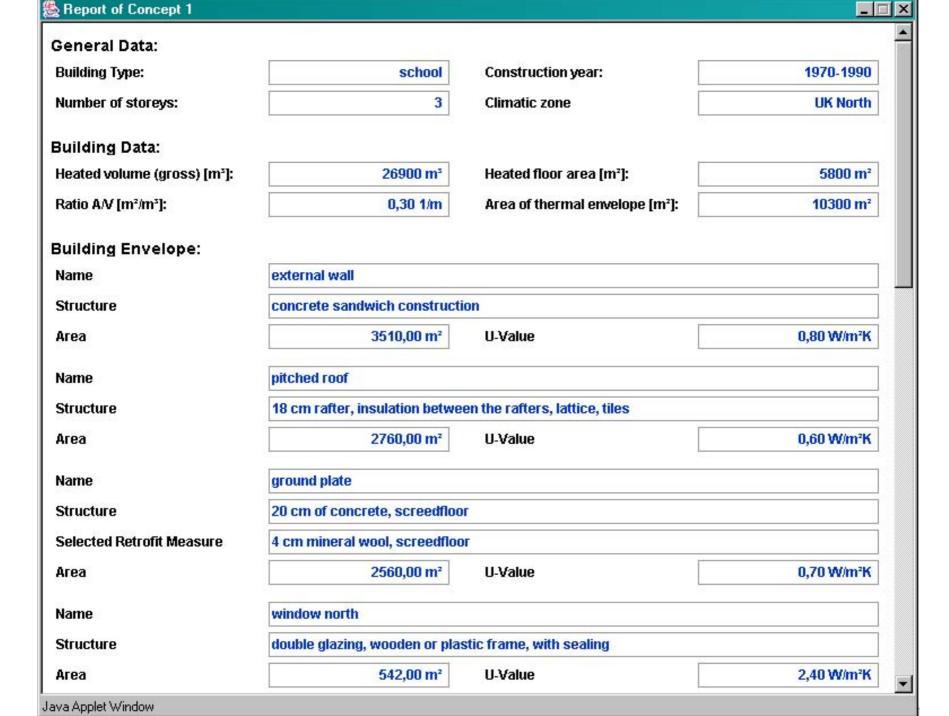
Define key values for a default building Basic Data Example buildings school **Building Type:** Central corridor school Typology: 1970-1990 Construction year: Click on picture to have a look at the case study! pitched (heated attic) Type of Roof: slab on ground Type of basement: Heated floor area (net) [m2]: 5802,00 Number of storeys: Orientation: School, Stuttgart, Germany < > Click on diagram to select orientation Consumption of heat energy: Consumption: k/Vh/m²a



General Information

The development part is structured in the below listed sectors. A sector can be opened or closed by clicking on its bar. For all needed informations (values, costs, etc..) defined values from national studies are deposited, but could be changed individually by the user, so please check the deposited values for your confidence. If you need help, click on





General Information

The developement part is structured in the below listed sectors. A sector can be opened or closed by clicking on its bar. For all needed informations (values, costs, etc..) defined values from national studies are deposited, but could be changed individually by the user, so please check the deposited values for your confidence. If you need help, click on 7.

How to use this part This part is for the creation and comparison of different concepts for an energy efficient retrofitting. There are possibilities for creating five different concepts. After having selected elements for a concept, the different concepts can be compared in the lower part 'Overview'. Select elements for the different concepts Choose here, which elements shall be retrofitted within a concept Overview: Look at the results of the different concepts. Different energy and economic values can b Select elements for the different concepts Concept Element: 1 2 3 4 5 Choosen retrofit measure: ground plate V V ∇ 4 cm mineral wool, screedfloor pump hot water heating 90/70 °C $\overline{\mathbf{v}}$ 哮 哮 Condensing Boiler 35/28- Add ventilation system (80% recovery) lighting source V V 굣 V V Compact Fluorescent external wall V V V internal insulation with 6 cm polystyrene, vapour barrier and gypsum boar lighting control 굣 굣 Occupancy sensor window north ιz. The measures are sorted by benefit-cost-value Overview Energy values related to floor area Show: **Show Results** Primary Energy Show: Show consumptions Show savings **Primary Energy** All Values are shown in kWh/m²a! 412.0 256.0 216,0 173,0 140,0 133,0 Existing Concept 1 Concept 2 Concept 3 Concept 4 Concept 5 Building

Work in BRITA in PuBs

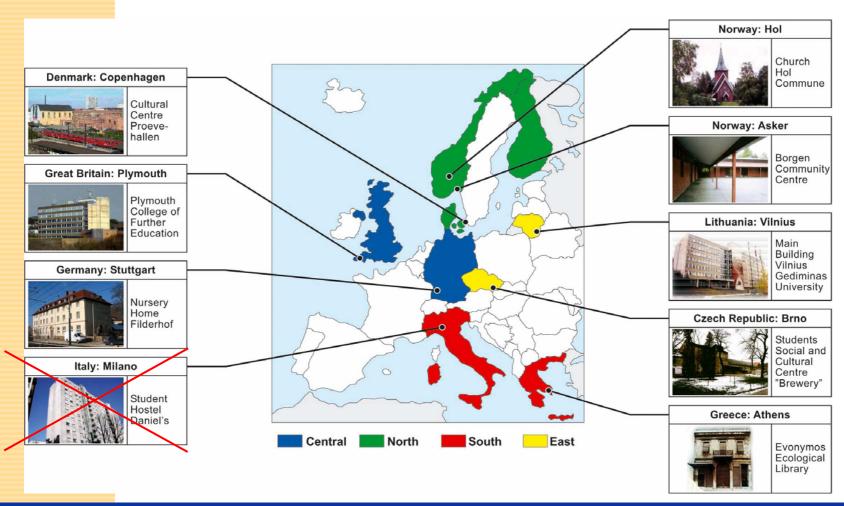
REDUCE Retrofitting in Educational Buildings

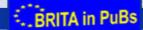
ENERGY CONCEPT ADVISER

for Technical Retrofit Measures

Use 3 parts of the ECA and extend it to all public buildings:

- add case studies
- add retrofit measures
- include add. public building types into performance rating


obtain recommendations for specific problems in your building	Recommendations
study more than 30 retrofitted buildings and retrofit measures	Case Studies & Retrofit Measures
compare your building's consumption to national data	Performance Rating
develop an energy efficient retrofit concept for your building	Retrofit Concept
programs and methods to analyse your building performance	Utilities
any questions	Info & Contact



Work in BRITA in PuBs: Case Studies



Work in BRITA in PuBs: Retrofit Measures

Building envelope	introduction (insulation, thermal bridges, air-tightness), windows (frames, glazing, U-value, g-Value), doors (draught sealing, insulation), insulation materials and systems (thermal conductivity), walls (interior/exterior, thermal composite system, overcladding, solar walls), roof (between the rafters, below or above the rafters), ceilings/basement (post-insulation, thermal bridges), innovations (three pane glazing, improved spacers, improved frames, improved insulation material), links
Heating systems	introduction, heating, domestic hot water, energy sources, control systems, innovations, links
Ventilation systems	introduction, natural ventilation, mechanical ventilation, hybrid ventilation, control and information, innovations, links
Solar control & cooling systems:	introduction, shading and glare protection, cooling systems, air-conditioning, control systems, innovations, links
Lighting & electrical appliances	introduction, lighting systems, electrical appliances, daylighting technics, control systems, innovations, links
Management	introduction, energy auditing, commissioning, education and training, non-investment, innovations, links
Renewables	introduction, solar thermal, PV, heat pumps (ground source, air-air, air-water, sea water-water), urban wind turbines, biomass heating, (hydrogen), innovations, links

Work in BRITA in PuBs: Performance Rating

			Country										
Data			Unit	Czech Republic	Den- mark	Finland	Ger- many	Greece	Italy	Lithu- ania	Norway	UK	
Heating energy consump- tion	Habi	itation	average	kWh/m²a									
			range	kWh/m²a									
	Soci facili		average	kWh/m²a									
			range	kWh/m²a									
		cation research	average	kWh/m²a									
			range	kWh/m²a									
	Culti Faci	ural lities	average	kWh/m²a									
			range	kWh/m²a									
	Serv	rices	average	kWh/m²a									
			range	kWh/m²a									
	Tran	sport	average	kWh/m²a									
			range	kWh/m²a									
Electrical energy consumption				kWh/m²a									
Water consumption				l/m²a									

Work in BRITA in PuBs

BRITA in PuBs Information Tool

for Technical Retrofit Measures

obtain recommendations for specific problems in your building

Case Studies

Study more than 30 retrofitted buildings and retrofit measures

Retrofit Measures

compare your building's consumption to national data

Performance Rating

any questions

Info & Contact

Work in BRITA in PuBs: Status Case Studies

Case Study Viewer

BRITA in PuBs

General Data

Site, Typology

Before Retrofit

Retrofit Concept

Energy Savings

Plymouth College of Further Edu

BRITA in PuBs

The Main Building of Vilnius Gediminas Technical Download of University

REPORT as PDF

General Data

Site, Typology

Before Retrofit

Retrofit Concept

Energy Savings

User Evaluation Renovation Costs

Lessons Learned

Additional Information

User Evaluation Renovation Costs Lessons Learned

Additional Information

Renovation Costs

Lessons Learned Additional Information

Case Study

Viewer

BRITA in PuBs

General Data

Site, Typology

Before Retrofit

Retrofit Concept

Us er Evaluation

BRITA in PuBs

General Data Site, Typology

Refore Retrofit

Retrofit Concept **Energy Savings**

User Evaluation Renovation Costs

Energy Savings Lessons Learned

Additional Information

General Data Site, Typology

Before Retrofit

Retrofit Concept

Energy Savings User Evaluation

Renovation Costs

Lessons Learned

Additional Information

General Data

Case Study

Viewer

	Address of project	The Main Building of Vilnius Gediminas Technical University Sauletekio al. 11 LT-10223 Vilnius-40 Lithuania
--	--------------------	--

1971 ear of construction

2004 - 2006 ear of renovation 8484.20 m²

Total floor area Number of occupants 1084

Number of rooms 219 Typical room 7.83 m²

The Main Building of Vilnius Gediminas Technical University (VGTU)

Project Summary

The original idea of the Main Building renovation was to replace windows, to renovate thermal unit, roof, heating system, to insulate facades and to change entrance doors. Basing oneself on the collected formation and the Multiple Criteria Decision Support System for Building Refurbishment (BRDS) system will be perform a multiple criteria analysis of the VGTU building retrofit project's components and select the most efficient versions. The construction will start in the end of 2004 and shall be finished at the beginning of 2006. After that a monitoring period is planned.

Retrofit features

U-values [W/m²K] of the main building structural units before retrofit and after retrofit; windows 2.5 and 1.16: walls 1.07 and 0.296: roof 0.8 and 0.2: doors 2.3 and 1.5. Heating energy consumption [kWh/m2] before retrofitting (2002) - 178, after in 2006 -

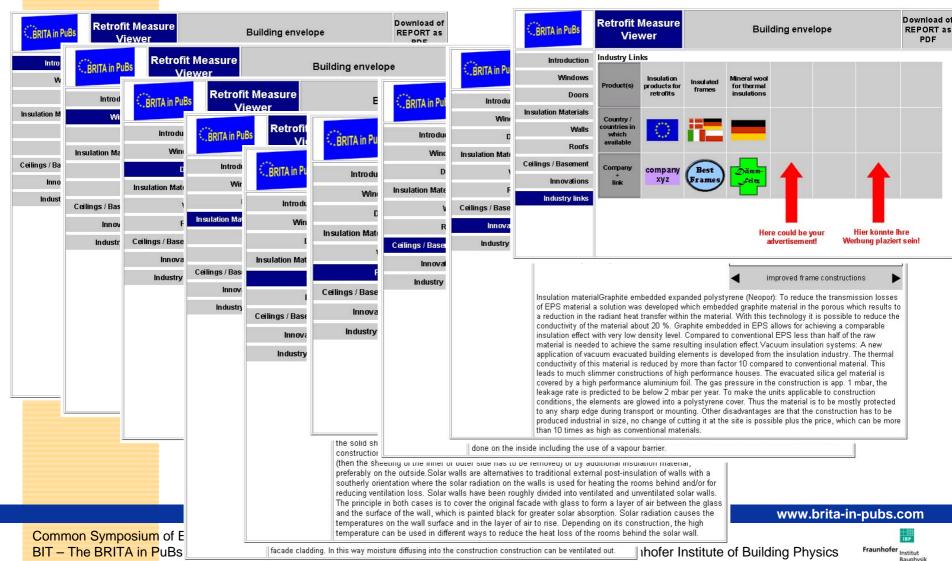
a prewery had to be transformed into a modern social and culture center for students and academics. This task had a huge impact on the design phase, because all building services had to be designed from scratch. The possible options, however, were quite limited by "ancient" building constructions (1 meter thick brick walls can hardly be found in modern buildings). Nevertheless, the Brewery is a proof that the state of the art technologies like BEMS, VRV air conditioning or PV modules can be employed in retrofitting of old buildings.

ventilation.

- Additional insulation
- . Low energy windows
- · Water saving measures
- · Daylighting
- . PV integration, 19 kWp and
- PV/Thermal collectors, 6 KWp.

www.brita-in-pubs.com

e of Building Physics



Common Symposium of EU FP6 BIT - The BRITA in PuBs information

Work in BRITA in PuBs: Status Retrofit Measures

Work in BRITA in PuBs: Status Info & Contact

